If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+20x-100=0
a = 4; b = 20; c = -100;
Δ = b2-4ac
Δ = 202-4·4·(-100)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{5}}{2*4}=\frac{-20-20\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{5}}{2*4}=\frac{-20+20\sqrt{5}}{8} $
| 7/8w=11/2w | | 5x-8=3(x+2) | | x+(3x/5)=70 | | x+(3x+5)=70 | | 352+122=c2 | | -2x=6(x-12) | | 3w-13w=40 | | 4(4-w)=3=(2w+2) | | 8x-1-5x-7=2x+4-4x | | 433=36x | | 21=(–2/3)g | | 3/2(4x-2)-2=1 | | -2-10=(z)/(10) | | −8c+5=277 | | 946=550(1+0.18t)) | | 5=2x=2x+6 | | 4=2p-6p | | -20f−8=-3f+17−17f | | (4)/(9)a=(1)/(9)a+(5)/(6) | | -4x-2x-10x=2x-34 | | 72=y-8 | | 4x-2x-10x=2x-34 | | b-70.25=43.50 | | 5-2x=8-5 | | -16x^2-38x+2035=0 | | (2)/(7)x-9=(5)/(7)x-15 | | 2x-6=-14-3x | | 40x+30=150 | | x=14=-6 | | -2+v/2=-14 | | z/8+7=5 | | -9-9x+7=3x+19 |